While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style Copy Citation Share to social media Give Feedback External Websites Thank you for your feedbackOur editors will review what you’ve submitted and determine whether to revise the article.
External WebsitesWhile every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style Copy Citation Share to social media External Websites Thank you for your feedbackOur editors will review what you’ve submitted and determine whether to revise the article.
External WebsitesProfessor Emeritus of Physics, Washington University, St. Louis, Missouri. Author of Astronomy: From Stonehenge to Quasars, A Thin Cosmic Rain, and others.
Michael Wulf Friedlander , James EvansProfessor of Physics and Director of Program for Science, Technology, and Society, University of Puget Sound, Tacoma, Washington. Author of The History and Practice of Ancient Astronomy; coeditor.
James Evans • All Fact-checked by The Editors of Encyclopaedia BritannicaEncyclopaedia Britannica's editors oversee subject areas in which they have extensive knowledge, whether from years of experience gained by working on that content or via study for an advanced degree. They write new content and verify and edit content received from contributors.
The Editors of Encyclopaedia Britannica Last Updated: Jul 26, 2024 • Article History Table of ContentsAsk the Chatbot a Question
Ask the Chatbot a Question
The range of physically allowable masses for stars is very narrow. If the star’s mass is too small, the central temperature will be too low to sustain fusion reactions. The theoretical minimum stellar mass is about 0.08 solar mass. An upper theoretical bound called the Eddington limit, of several hundred solar masses, has been suggested, but this value is not firmly defined. Stars as massive as this will have luminosities about one million times greater than that of the Sun.
A general model of star formation and evolution has been developed, and the major features seem to be established. A large cloud of gas and dust can contract under its own gravitational attraction if its temperature is sufficiently low. As gravitational energy is released, the contracting central material heats up until a point is reached at which the outward radiation pressure balances the inward gravitational pressure, and contraction ceases. Fusion reactions take over as the star’s primary source of energy, and the star is then on the main sequence. The time to pass through these formative stages and onto the main sequence is less than 100 million years for a star with as much mass as the Sun. It takes longer for less massive stars and a much shorter time for those much more massive.
Once a star has reached its main-sequence stage, it evolves relatively slowly, fusing hydrogen nuclei in its core to form helium nuclei. Continued fusion not only releases the energy that is radiated but also results in nucleosynthesis, the production of heavier nuclei.
Stellar evolution has of necessity been followed through computer modeling, because the timescales for most stages are generally too extended for measurable changes to be observed, even over a period of many years. One exception is the supernova, the violently explosive finale of certain stars. Different types of supernovas can be distinguished by their spectral lines and by changes in luminosity during and after the outburst. In Type Ia, a white dwarf star attracts matter from a nearby companion; when the white dwarf’s mass exceeds about 1.4 solar masses, the star implodes and is completely destroyed. Type II supernovas are not as luminous as Type Ia and are the final evolutionary stage of stars more massive than about eight solar masses. Type Ib and Ic supernovas are like Type II in that they are from the collapse of a massive star, but they do not retain their hydrogen envelope.
The nature of the final products of stellar evolution depends on stellar mass. Some stars pass through an unstable stage in which their dimensions, temperature, and luminosity change cyclically over periods of hours or days. These so-called Cepheid variables serve as standard candles for distance measurements (see above Determining astronomical distances). Some stars blow off their outer layers to produce planetary nebulas. The expanding material can be seen glowing in a thin shell as it disperses into the interstellar medium while the remnant core, initially with a surface temperature as high as 100,000 K (180,000 °F), cools to become a white dwarf. The maximum stellar mass that can exist as a white dwarf is about 1.4 solar masses and is known as the Chandrasekhar limit. More-massive stars may end up as either neutron stars or black holes.
The average density of a white dwarf is calculated to exceed one million grams per cubic cm. Further compression is limited by a quantum condition called degeneracy (see degenerate gas), in which only certain energies are allowed for the electrons in the star’s interior. Under sufficiently great pressure, the electrons are forced to combine with protons to form neutrons. The resulting neutron star will have a density in the range of 10 14 –10 15 grams per cubic cm, comparable to the density within atomic nuclei. The behaviour of large masses having nuclear densities is not yet sufficiently understood to be able to set a limit on the maximum size of a neutron star, but it is thought to be less than three solar masses.
Still more-massive remnants of stellar evolution would have smaller dimensions and would be even denser that neutron stars. Such remnants are conceived to be black holes, objects so compact that no radiation can escape from within a characteristic distance called the Schwarzschild radius. This critical dimension is defined by Rs = 2GM/c 2 . (Rs is the Schwarzschild radius, G is the gravitational constant, M is the object’s mass, and c is the speed of light.) For an object of three solar masses, the Schwarzschild radius would be about three kilometres. Radiation emitted from beyond the Schwarzschild radius can still escape and be detected.
Although no light can be detected coming from within a black hole, the presence of a black hole may be manifested through the effects of its gravitational field, as, for example, in a binary star system. If a black hole is paired with a normal visible star, it may pull matter from its companion toward itself. This matter is accelerated as it approaches the black hole and becomes so intensely heated that it radiates large amounts of X-rays from the periphery of the black hole before reaching the Schwarzschild radius. Some candidates for stellar black holes have been found—e.g., the X-ray source Cygnus X-1. Each of them has an estimated mass clearly exceeding that allowable for a neutron star, a factor crucial in the identification of possible black holes. Supermassive black holes that do not originate as individual stars exist at the centre of active galaxies (see below Study of other galaxies and related phenomena). One such black hole, that at the center of the galaxy M87, has a mass 6.5 billion times that of the Sun and has been directly observed.
Whereas the existence of stellar black holes has been strongly indicated, the existence of neutron stars was confirmed in 1968 when they were identified with the then newly discovered pulsars, objects characterized by the emission of radiation at short and extremely regular intervals, generally between 1 and 1,000 pulses per second and stable to better than a part per billion. Pulsars are considered to be rotating neutron stars, remnants of some supernovas.
Stars are not distributed randomly throughout space. Many stars are in systems consisting of two or three members separated by less than 1,000 AU. On a larger scale, star clusters may contain many thousands of stars. Galaxies are much larger systems of stars and usually include clouds of gas and dust.
The solar system is located within the Milky Way Galaxy, close to its equatorial plane and about 8 kiloparsecs from the galactic centre. The galactic diameter is about 30 kiloparsecs, as indicated by luminous matter. There is evidence, however, for nonluminous matter—so-called dark matter—extending out nearly twice this distance. The entire system is rotating such that, at the position of the Sun, the orbital speed is about 220 km per second (almost 500,000 miles per hour) and a complete circuit takes roughly 240 million years. Application of Kepler’s third law leads to an estimate for the galactic mass of about 100 billion solar masses. The rotational velocity can be measured from the Doppler shifts observed in the 21-cm emission line of neutral hydrogen and the lines of millimetre wavelengths from various molecules, especially carbon monoxide. At great distances from the galactic centre, the rotational velocity does not drop off as expected but rather increases slightly. This behaviour appears to require a much larger galactic mass than can be accounted for by the known (luminous) matter. Additional evidence for the presence of dark matter comes from a variety of other observations. The nature and extent of the dark matter (or missing mass) constitutes one of today’s major astronomical puzzles.
There are about 100 billion stars in the Milky Way Galaxy. Star concentrations within the galaxy fall into three types: open clusters, globular clusters, and associations (see star cluster). Open clusters lie primarily in the disk of the galaxy; most contain between 50 and 1,000 stars within a region no more than 10 parsecs in diameter. Stellar associations tend to have somewhat fewer stars; moreover, the constituent stars are not as closely grouped as those in the clusters and are for the most part hotter. Globular clusters, which are widely scattered around the galaxy, may extend up to about 100 parsecs in diameter and may have as many as a million stars. The importance to astronomers of globular clusters lies in their use as indicators of the age of the galaxy. Because massive stars evolve more rapidly than do smaller stars, the age of a cluster can be estimated from its H-R diagram. In a young cluster the main sequence will be well populated, but in an old cluster the heavier stars will have evolved away from the main sequence. The extent of the depopulation of the main sequence provides an index of age. In this way, the oldest globular clusters have been found to be about 12.5 billion years old, which should therefore be the minimum age for the galaxy.
The interstellar medium, composed primarily of gas and dust, occupies the regions between the stars. On average, it contains less than one atom in each cubic centimetre, with about 1 percent of its mass in the form of minute dust grains. The gas, mostly hydrogen, has been mapped by means of its 21-cm emission line. The gas also contains numerous molecules. Some of these have been detected by the visible-wavelength absorption lines that they impose on the spectra of more-distant stars, while others have been identified by their own emission lines at millimetre wavelengths. Many of the interstellar molecules are found in giant molecular clouds, wherein complex organic molecules have been discovered.
In the vicinity of a very hot O- or B-type star, the intensity of ultraviolet radiation is sufficiently high to ionize the surrounding hydrogen out to a distance as great as 100 parsecs to produce an H II region, known as a Strömgren sphere. Such regions are strong and characteristic emitters of radiation at radio wavelengths, and their dimensions are well calibrated in terms of the luminosity of the central star. Using radio interferometers, astronomers are able to measure the angular diameters of H II regions even in some external galaxies and can thereby deduce the great distances to those remote systems. This method can be used for distances up to about 30 megaparsecs. (For additional information on H II regions, see nebula: Diffuse nebulae (H II regions).)
Interstellar dust grains scatter and absorb starlight, the effect being roughly inversely proportional to wavelength from the infrared to the near ultraviolet. As a result, stellar spectra tend to be reddened. Absorption typically amounts to about one magnitude per kiloparsec but varies considerably in different directions. Some dusty regions contain silicate materials, identified by a broad absorption feature around a wavelength of 10 μm. Other prominent spectral features in the infrared range have been sometimes, but not conclusively, attributed to graphite grains and polycyclic aromatic hydrocarbons (PAHs).
Starlight often shows a small degree of polarization (a few percent), with the effect increasing with stellar distance. This is attributed to the scattering of the starlight from dust grains that have been partially aligned in a weak interstellar magnetic field. The strength of this field is estimated to be a few microgauss, very close to the strength inferred from observations of nonthermal cosmic radio noise. This radio background has been identified as synchrotron radiation, emitted by cosmic-ray electrons traveling at nearly the speed of light and moving along curved paths in the interstellar magnetic field. The spectrum of the cosmic radio noise is close to what is calculated on the basis of measurements of the cosmic rays near Earth.
Cosmic rays constitute another component of the interstellar medium. Cosmic rays that are detected in the vicinity of Earth comprise high-speed nuclei and electrons. Individual particle energies, expressed in electron volts (eV; 1 eV = 1.6 × 10 −12 erg), range with decreasing numbers from about 10 6 eV to more than 10 20 eV. Among the nuclei, hydrogen nuclei are the most plentiful at 86 percent, helium nuclei next at 13 percent, and all other nuclei together at about 1 percent. Electrons are about 2 percent as abundant as the nuclear component. (The relative numbers of different nuclei vary somewhat with kinetic energy, while the electron proportion is strongly energy-dependent.)
A minority of cosmic rays detected in Earth’s vicinity are produced in the Sun, especially at times of increased solar activity (as indicated by sunspots and solar flares). The origin of galactic cosmic rays has not yet been conclusively identified, but they are thought to be produced in stellar processes such as supernova explosions, perhaps with additional acceleration occurring in the interstellar regions. (For additional information on interstellar matter, see Milky Way Galaxy: The general interstellar medium.)